D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures in Dresden-First version

WP 3, T 3.2

Date of document

September, 2019, (M24)
Technical References

<table>
<thead>
<tr>
<th>Deliverable No.</th>
<th>D3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissemination Level</td>
<td>PU</td>
</tr>
<tr>
<td>Work Package</td>
<td>WP 3 – Demonstration in Dresden</td>
</tr>
<tr>
<td>Task</td>
<td>T 3.2 – Baseline of interventions definition</td>
</tr>
<tr>
<td></td>
<td>Subtask 3.2.1 – Simulation models (buildings, energy systems, city infrastructures)</td>
</tr>
<tr>
<td>Lead beneficiary</td>
<td>8 (DRE)</td>
</tr>
<tr>
<td>Contributing beneficiary(ies)</td>
<td>9 (DWG)</td>
</tr>
<tr>
<td>Due date of deliverable</td>
<td>30 September 2019</td>
</tr>
<tr>
<td>Actual submission date</td>
<td>25 September 2019</td>
</tr>
<tr>
<td>Estimated person-month for deliverable</td>
<td>4</td>
</tr>
</tbody>
</table>
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

<table>
<thead>
<tr>
<th>Version</th>
<th>Person</th>
<th>Partner</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Ömer Akyürek, Juan Pablo Gonzalez Gutierrez, Linda Arnhold</td>
<td>DEM</td>
<td>30 July 2019</td>
</tr>
<tr>
<td>0.2</td>
<td>Linda Arnhold, Torsten Schwan, Alexander Haidan</td>
<td>DRE, EASD, DWG</td>
<td>16 August 2019</td>
</tr>
<tr>
<td>0.4</td>
<td>Linda Arnhold</td>
<td>DRE</td>
<td>30 August 2019</td>
</tr>
<tr>
<td>1.0</td>
<td>Linda Arnhold</td>
<td>DRE</td>
<td>20 September 2019</td>
</tr>
</tbody>
</table>

Disclaimer

The information reflects only the author’s view and the Commission is not responsible for any use that may be made of the information it contains.
Table of Content

0 Abstract... 8
1 Introduction .. 9
 1.1 Purpose and target group.. 9
 1.2 Contribution of partners .. 10
 1.3 Relation to other activities in the project ... 10
2 Approach for the Development and Implementation of Baseline Models 12
 2.1 Models for baseline in energy interventions .. 12
 2.1.1 IPMVP protocol .. 12
 2.1.2 Mathematical models for baseline adjustments .. 17
 2.1.2.1 Routine and non-routine adjustments ... 19
 2.1.2.2 Independent variables ... 19
 2.1.2.3 Regression techniques ... 20
 2.1.3 Simulation models and tools .. 22
 2.2 Models for baseline in mobility interventions .. 28
 2.3 Models for baseline in ICT interventions .. 28
 2.4 Models for baselines in non-technical interventions .. 28
3 Interventions / Indicators requiring baseline simulation or adjustment 29
 3.1 Intervention 1 New building constriction (District future House) 29
 3.2 Intervention 2 - Retrofitting of private residential buildings ... 35
 3.3 Intervention 3: District Heating ... 43
 3.4 Smart Controls .. 49
4 Conclusions .. 53
5 References ... 54
List of Tables

Table 1: Contribution of partners ... 10
Table 2: Relation to other activities ... 10
Table 3: Overview of IPMVP options ... 15
Table 4: IPMVP Option Template ... 16
Table 5: Extended IPMVP Option Template .. 25
Table 6: Regulations for buildings in Germany ... 27
Table 7: Option Template for Intervention 1 .. 29
Table 8: Option Template for Intervention 2 .. 35
Table 9: Option Template for Intervention 3 .. 43
Table 10: Option Template for Intervention 4 .. 49
List of Figures

Figure 1 Example energy history... 13
Figure 2 M&V Procedure .. 14
Figure 3: Baseline definition process .. 18
Figure 4: Linear model of monthly energy consumption (example) 22
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(E)MS</td>
<td>Building (Energy) Management System</td>
</tr>
<tr>
<td>BEST</td>
<td>Building Energy Specification Table</td>
</tr>
<tr>
<td>CBCC</td>
<td>Central Building Control Centre</td>
</tr>
<tr>
<td>CDD</td>
<td>Cooling degree-days</td>
</tr>
<tr>
<td>CHP</td>
<td>Combined Heat and Power</td>
</tr>
<tr>
<td>CPT</td>
<td>Clean Power for Transport</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>DH</td>
<td>District Heating</td>
</tr>
<tr>
<td>DHW</td>
<td>Domestic Hot Water</td>
</tr>
<tr>
<td>EASD</td>
<td>EA Systems GmbH Dresden</td>
</tr>
<tr>
<td>EEWärmeG</td>
<td>Erneuerbare Energien Wärme Gesetz</td>
</tr>
<tr>
<td>EnEG</td>
<td>Energieeinsparungsgesetz (Energy Saving Act)</td>
</tr>
<tr>
<td>EnEV</td>
<td>Energieeinsparungsverordnung (Energy Saving Ordinance)</td>
</tr>
<tr>
<td>EPBD</td>
<td>Energy Performance in Buildings Directive</td>
</tr>
<tr>
<td>EV</td>
<td>Electric Vehicle</td>
</tr>
<tr>
<td>FMI</td>
<td>Functional Mockup Interface</td>
</tr>
<tr>
<td>GEG</td>
<td>Gebäudeenergiegesetz (Building Energy Act)</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>HDD</td>
<td>Heating degree-days</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation and Air Conditioning</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communications Technology</td>
</tr>
<tr>
<td>IPMVP</td>
<td>International Performance Measurement and Verification Protocol</td>
</tr>
<tr>
<td>KfW</td>
<td>Kreditinstitut für Wiederaufbau</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>LFG</td>
<td>Landfill Gas</td>
</tr>
<tr>
<td>M&V</td>
<td>Monitoring and Verification</td>
</tr>
<tr>
<td>NZEB</td>
<td>Nearly Zero-Energy Buildings</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>RES</td>
<td>Renewable Energy Sources</td>
</tr>
<tr>
<td>R2</td>
<td>R-Square value</td>
</tr>
<tr>
<td>SCC</td>
<td>Smart Cities and Communication</td>
</tr>
<tr>
<td>SCTP</td>
<td>Smart City Technology Packages</td>
</tr>
<tr>
<td>SEAP</td>
<td>Sustainable Energy Action Plan</td>
</tr>
<tr>
<td>SUMP</td>
<td>Sustainable Urban Mobility Plan</td>
</tr>
<tr>
<td>TEST</td>
<td>Transport Energy Specifications Table</td>
</tr>
<tr>
<td>WP</td>
<td>Work Package</td>
</tr>
</tbody>
</table>
0 Abstract

Within the scope of the MAtchUP, very ambitious demonstration will be deployed in Valencia (Spain), Dresden (Germany) and Antalya (Turkey). To coordinate the complex activities within each demo-site three separate but parallel Work Packages (WP2, WP3 and WP4) have been established. The deliverable 3.2 “Simulation models of the building stock, energy system, transportation, urban infrastructures in Dresden-Frist version”, aims to identify the need of implementation of simulation models as basis for the definition of the baseline information. This document informs about the approach of the development and implementation of baseline models and introduces the interventions that require baseline simulation.

This report is an outcome of “Task 3.2 Baseline of interventions definition, Subtask 3.2.1 Simulation models (buildings, energy systems, and city infrastructures)” of the work package 3 dedicated to Dresden demonstrator.

The objective of the subtask 3.2.1 is the development of simulations and mathematical models needed to calculate and adjust baselines; since baselines are needed to have a reference period to compare the results gotten during the monitoring period and evaluate the improvement measures implemented in Dresden interventions.

This deliverable D3.2 includes the description of the methodology and tools used for develop the models, as well as the definition of those interventions that will require simulations and adjustments of its baseline. The report will be completed in its final version (D3.15) with the correspondent simulations and calculations.
1 Introduction

1.1 Purpose and target group

This deliverable provides the methodological tools to be used in MAtchUP for determining through mathematical models any data necessary for the calculation of an indicator, when such data cannot be directly measured, obtained from historical records or through well-founded assumptions.

The data obtained through simulation may be used for the calculation of any kind of indicator (either technical, social or economic) defined in deliverables D5.1, D5.2 or D5.3, at action or intervention levels.

A typical use of simulation models is the determination of the baseline of energy consumption of new buildings. In such a case, the simulation must provide the consumption of a building of the same dimensions, use, occupancy, location, operating under the same weather conditions of the real one, but built with the minimum legal requirements for energy efficiency.

This deliverable provides:

- Introduction of the approach for the development and implementation of Baseline Models for energy, mobility, ICT and NTA interventions
 - IPMVP protocol
 - Mathematical models for baseline adjustments
 - Simulation models and tools
- Description of the simulation methodology to be used in each case:
 - Tool used and characteristics
 - Model description and boundaries
 - Input data required
 - Output data obtained
 - Assumptions
 - Calibration/validation of the model
- Identification of the couples indicator-action or indicator-intervention requiring baseline adjustments for their calculation
- Description of the methodology to be used for baseline adjustments in each case:
 - Baseline period
 - Identification of factors requiring routine adjustments
 - Identification of factors requiring non-routine adjustments
 - Baseline data
 - Mathematical model obtained

The specific results obtained in each case will be specified and used in D3.3- “Baseline of Dresden demonstrator”.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement N°774477
This deliverable provides the simulation models for the evaluation of the baseline of the areas of intervention in each LHC. These baselines will be the reference for the final technical assessment to be done in WP5.

1.2 Contribution of partners

The following Table 1 depicts the main contributions from participant partners in the development of this deliverable.

<table>
<thead>
<tr>
<th>Participant short name</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRE</td>
<td>WP Leader. Leading definition of the actions. Is the task leader for T3.2 and will coordinate the efforts in developing the deliverable D3.2.</td>
</tr>
<tr>
<td>EASD</td>
<td>Will support the municipality in the definition of the intervention design. EASD will support all energy actions and is involved in monitoring activities.</td>
</tr>
<tr>
<td>DWG</td>
<td>Will support the municipality in the definition of the intervention design. Will support all energy actions and will involve in monitoring activities</td>
</tr>
<tr>
<td>DEM</td>
<td>Energy expert of Antalya, discussed about ToC and is responsible for chapter 2.1.1</td>
</tr>
<tr>
<td>ITE</td>
<td>Energy expert of Valencia, discussed about ToC and is responsible for chapter 2.1.2</td>
</tr>
</tbody>
</table>

Table 1: Contribution of partners

1.3 Relation to other activities in the project

<table>
<thead>
<tr>
<th>Deliverable/Task</th>
<th>Relation to D 3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 3.2</td>
<td>Once implemented the city diagnosis and outlined the complete description of the design of the interventions, a complete baseline describing the initial reference status of the buildings is provided. This will be the basis to the evaluation to be implemented in WP5. D 3.2 is linked with Subtask 3.2.1 “Simulation models (buildings, energy systems, city infrastructures), basis for the definition of the baseline information. D3.2 is also linked with Subtask 3.2.2 “Baseline of interventions”: Once developed the simulation models and established the design and the evaluation framework in WP5, the reference baseline to evaluate the performance is outlined and implemented.</td>
</tr>
<tr>
<td>D 3.15</td>
<td>Final version of D3.2</td>
</tr>
<tr>
<td>T 3.3</td>
<td>High-Performance District and Smart Homes: This task is focused on the definition of a new concept of interventions related to the extensive retrofitting, new construction programmes and smart homes developments for Dresden. These interventions are aimed to lead to a highly energy efficient buildings that create a new concept of high performance district (Johannstadt) in Dresden.</td>
</tr>
<tr>
<td>T 5.1</td>
<td>“Technical evaluation framework” informs about indicators that need simulation</td>
</tr>
<tr>
<td>T 5.6</td>
<td>The evaluation of T 3.2 will be performed in T 5.6 Technical evaluation process</td>
</tr>
</tbody>
</table>

Table 2: Relation to other activities
This deliverable is linked with Task 3.2 “Baseline of interventions definition”, more specifically Subtask 3.2.1 “Simulation models (buildings, energy systems, city infrastructures)”. The aim is to identify the need of implementation of simulation models of the building, energy systems and mobility infrastructures as basis for the definition of the baseline information. These simulation models will have enough detail to perform an appropriate evaluation and impact assessment. The outcome of Subtask 3.2.1 will be implemented in Subtask 3.2.2 “Baseline of interventions”. Once developed the simulation models and established the design and evaluation framework in WP5, the reference baseline to evaluate the performance is outlined and implemented.” In WP5 in T.5.1 “Technical evaluation framework” it is highly recommended to design simulations for indicators selected for technical evaluation of the smart city solutions deployed in the demonstration actions to define expected performances of them. This way, later deviations from design values can be detected. The technical evaluation framework with the indicators and their evaluation procedure is given by T5.1. The evaluation framework consists of 14 energy indicators, 22 mobility indicators and 7 ICT indicators.\(^1\) Especially for expected energy performances of the defined systems, simulation, modelling and calculation are planned in the planning phase. It gives the opportunity to detect later deviations from design values.\(^2\)

Regarding calculated assessments, there are different simulation methods that can be used for different purposes. For the building permit process and energy performance certificates, the assessment tries to minimise the effect of operation and use of the building with standard profiles for occupancy and internal loads. Thus, the buildings can be compared. Completely different use case is tailored energy consumption simulation, which tries to get the consumption that would occur if the building is operated under specific conditions. This approach can be particularly useful for example to set up a baseline for planning renovation actions, when actual measurements are not available.\(^3\)

The definition of the baseline for new buildings is usually developed making use of energy analysis tools, and simulation in particular; and involves some key issues:

- Appropriateness, defining a clear and consistent baseline; based upon energy codes and standards, for instance.
- Rigor, developing the baseline to a level of detail appropriate for the measurement and verification methods and analytical tools to be used.
- Repeatability, being easily adjusted to allow performance comparisons on a broader scale.\(^4\)

\(^1\) D5.1 Technical evaluation procedure, p. 8
\(^2\) D5.1, p. 36
\(^3\) D5.1, p. 46
\(^4\) D5.1, p. 47
2 Approach for the Development and Implementation of Baseline Models

2.1 Models for baseline in energy interventions

The energy baseline is a reference basis for comparison of energy performance and its adequate definition is essential to evaluate the real improvement derived from an energy intervention.

Sometimes, energy baselines can be directly established from consumption measures, without requiring any model. Nevertheless, in most cases, the effect of different variables needs to be taken into account, being necessary the use of mathematical tools to facilitate the adjustment of consumption data to environmental conditions of the evaluating periods. Moreover, other times, when critical information of the reference period does not exist (because it is not available or the facility is new and there is no historical) it may be necessary to simulate, estimate or calculate the expected energy consumption.

At this regard, the energy baseline could be:

1 – Direct consumption records.
2 – Adjusted consumption from real energy records.
3 – Simulated/calculated consumption.

2.1.1 IPMVP protocol

MAtechUP project involves many actions and interventions under large-scale demonstration projects of innovative technologies in energy, mobility and ICT sector. In line with the objectives of the MAtechUP, performance of each action and intervention needs to be analysed with a systematic approach and framework. The determination of the performance requires both accurate measurement and replicable methodology to reliably determine actual savings created within the project activities. IPMVP (International Performance Measurement & Verification Protocol) developed by the Efficiency Valuation Organization (EVO, 2012) has been identified as one of the suitable methodological tools to be followed for this project activity (MAtechUP D5.1 Technical Evaluation Protocol).

Energy savings can be only determined by making comparison between the state before and after the implemented action. But, this comparison is not enough to determine the savings and, in most cases, will require adjustments to take into account the impacts of the implementation on different conditions (ex. change in number of occupancies due to increased living space).

5 EnB, ISO 50.006
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement N°774477

D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

Under the IPMVP Volume 1, the equation for energy savings is generalized as follows:

\[
\text{Energy Savings} = (\text{Baseline Period Use or Demand} - \text{Reporting Period Use or Demand}) \pm \text{Adjustments}
\]

[Equation 1]

The term baseline refers to the time period prior to the action\(^7\) (modification or intervention such as insulating a building envelop, installation of a PV system, etc.), that provides a reference to which later performance of the action can be measured. How the baseline period use or demand is identified, depends mainly on which approach is selected for Monitoring and Verification (M&V). The approach is mostly defined, inter alia, by the availability (and/or reliability) of the data itself.

Determination of savings is a necessary part of good design of the actions itself. The basic approach common to all good savings determination involves several steps including;

\(^6\) IPMVP 2012 Volume 1

\(^7\) Under the IPMVP document, the term ECM (Energy Conservation Measure) is used also used to define the action and is described as “Action or set of actions designed to improve efficiency or conserve energy or water or energy demand”.

Figure 1 Example energy history\(^6\)

Under the IPMVP Volume 1, the equation for energy savings is generalized as follows:

\[
\text{Energy Savings} = (\text{Baseline Period Use or Demand} - \text{Reporting Period Use or Demand}) \pm \text{Adjustments}
\]

[Equation 1]
This deliverable addresses the selection of IPMVP options as well as simulation requirements for the individual action design and baseline definition. Following the IPMVP options will be introduced.

Overview of IPMVP options

IPMVP provides four Options for determining savings; A, B, C and D. These options determine defining how to measure or quantify the parameters in [Equation 1]. Each requires data on energy consumption, demand and other parameters both for baseline period and monitoring period. They differ in a wide range such as data from invoices, dedicated monitoring devices as well as computer simulations.

The following sections provide summaries of these four options and how to select them as indicated under the IPMVP Protocol Document.

8 IPMVP 2012 Volume 1
Among all four options available under the IPMVP Protocol, only Option D involves simulation of the energy consumption and demand. The decision-making process for Dresden interventions will be part of chapter 3.

9 2016 IPMVP Core Concept
Option D: Calibrated Simulation

Option D is used to determine either one or both of baseline period and monitoring period energy use in [Equation 1]. This option is used when there is no available data from the baseline period (e.g., in new constructions). This option could be used to determine both facility level or action level performance. In case Option D is used for individual systems within the facility, energy consumption and demand of the system must be isolated from the rest of the facility by appropriate meters, which will be used for the calibration of the simulation model.

A simulation program that has been evaluated against ASHRAE Standard 140 should be preferred although other proprietary software may also be used. To ensure high accuracy the simulation results must be calibrated. The calibration is made by comparing model results to measured performance data (post-action monitoring), independent variables and static factors.

Calibration of building simulations is usually done with 12 consecutive months’ monitored data over a stable operating period. These data might include operating characteristics, occupancy, weather, loads and equipment efficiency.

It should be noted that the calibration of the simulation and the calculations of savings are not within the scope of this deliverable D3.2. Details and results of the calibration process will be detailed under D3.15 while calculations will be presented under D3.3.

Selection Guide

The selection of the IPMVP Option is based on several issues including the measurement boundary, project conditions, budget and expert judgement. Following the explanations of section 2.1.1 of this document, each LHC may identify which IPMVP Option to select for its interventions / indicator bundles. The following template illustrated below could be used to summarize the results under Section 3 of this deliverable.

Table 4: IPMVP Option Template

<table>
<thead>
<tr>
<th>Involved Action</th>
<th>Savings</th>
<th>Affected Equipment</th>
<th>Expected Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a list of involved actions</td>
<td>Describe in brief how the measure saves energy or other resources (e.g., reduction of energy)</td>
<td>Provide a list of affected physical equipment</td>
<td>A preliminary result on expected savings</td>
</tr>
</tbody>
</table>

IPMVP Option Selection Guidance

Follow each question starting from 1. Highlight choice of selection with a colour.

10 cf. 2016 IPMVP Core Concept
Intervention Characteristics

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2] Able to isolate Actions(s) with meter(s)?</td>
<td>Please go to [4]</td>
<td>Please go to [3]</td>
</tr>
<tr>
<td>[6B] Missing baseline period data?</td>
<td>OPTION D</td>
<td>OPTION A</td>
</tr>
</tbody>
</table>

Measurement Boundary

The selection of IPMVP Option needs to be complemented with defining the measurement boundary. A brief description or figure demonstrating the measurement boundary will be included under this section.

Indicators

Include indicators that are relevant to the simulation scope.

Baseline Period

This is the time period over which the facility or system baseline conditions are assessed and documented. This baseline period is often a year but can be any period depending on the specific needs.

2.1.2 Mathematical models for baseline adjustments

Taking into account the typology of the energy interventions developed in the project, where several energy conservation measures need to be evaluated at building/facility level, the more common IPMVP options used to define baselines and estimate energy savings are options C and D.

Option C is oriented to assess energy performance of the total facility, analysing all the direct and indirect effects derived from the implementation of one or several improvements, being the most used for buildings when there is available data of both, reference and demonstrative period. When this information does not exist, simulations models need to be applied through option D, as the following diagram shows.
Application

According to IPMVP protocol, alternative C is best applied when: (1) energy performance of the whole facility will be assessed analysing savings on global consumption, (2) several improvement measures want to be analysed in the same facility, (3) individual performance is difficult to separately measure, being several cross-effects to consider, (4) a single action affects some equipment of one facility, (5) savings are larger compared to the variance in the baseline and reporting period data (>10%) and/or (6) other options are more complex and expensive.

In this regard, the project interventions combine different kind of measures oriented to reduce energy demand of the building, improve the energy efficiency and increase the use of renewable resources, being not easy to clearly identify the isolated contribution of each improvement to the global energy, socio-economic and environmental impact.

Required data and calculations

To estimate energy savings through option C, routine and non-routine adjustment are needed to consider the influence of environmental variables in the variation of energy consumption between the comparison periods. At this respect, identify the correct independent variables is essential to develop valid mathematical models, as well as having controlled the facility changes that will require non-routine adjustments.

In this option, the energy data is usually obtained from utility meters, whole-facility meters, or sub-meters, and complete years are needed to determine a correct baseline.

MAtechUP’s interventions, reference period values will be gotten when possible from historical monitored data and/or energy bills, while demonstrative data will be gotten from whole-facility meters and sub-meters installed in specific actions of the project.
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

Influence factors will be either monitored (ambient temperature) or collected via questionnaires.

\subsection*{2.1.2.1 Routine and non-routine adjustments}

As explained previously, IPMVP propose calculating energy savings comparing energy consumption before and after applying energy efficiency measures, following the general M&V equation. Nevertheless, baseline energy registered during the reference period cannot be directly compared to measured energy during the reporting period since energy consumption do not happen under the same conditions necessarily. In consequence, adjustments are needed in order to make metered energy directly comparable to baseline energy. In this regard, two types of adjustments are presented, following its nature:

- **Routine adjustments**, included in order to consider the impact of factors directly influencing energy consumptions, and which are expected to vary following a specified routine.
- **Non-routine adjustments**, that integrate in the equation the impact of factors also influencing energy consumption, but not expected to change routinely, thus related to occasional and sporadic changes, but never following an identifiable pattern.

An example of M&V process for evaluating energy savings in a typical household is presented in order to illustrate these concepts. There are many possible non-routine adjustments in that case; change of appliances, birth of a new member in the family or absences for trips or during vacation periods are some of them. All this factors should be considered in the model if they are proved to really influence household energy consumption. Nevertheless, some of them like, for example, absences during holidays, could be included as routine adjustments if they are repeated every year during the same dates, thus creating a periodicity of the factor. On the other hand, the most typical routine adjustments for the presented case involve considering the impact of weather conditions, which usually follows some clear trends. In consequence, variables like temperature or even humidity could be integrated in the model so that seasonality of the weather is considered, resulting in a variation in cooling and heating consumption.

\subsection*{2.1.2.2 Independent variables}

When a relationship between two or more variables is identified, the definition of a simple model involves traducing this relationship into a mathematical equation correlating these variables. In general, a representative example of correlation equation is the multiple linear regressions, which can be described as follows:

\[y = \beta_0 + \beta_1 * x_1 + \ldots + \beta_n * x_n + e \]

In that equation \(y \) is known as dependent variable because it considers the measured variable whose values will be studied, and that is intended to be optimized in some cases either to their minimum or maximum possible value. On the other hand, the
variables represented as \(x_n \) represent the impact of factors affecting the value of the dependent variable and, in consequence, are known as independent variables. Consequently, their value is measured in order to consider their impact on the dependent variable.

In general, some commonly used independent variables in energy consumption regression analysis are:

- Heating degree-days (HDD)
- Cooling degree-days (CDD)
- Number of occupants
- Units produced in a production process
- Ambient dry-bulb temperature

In the example of the household energy consumption model previously described, the dependent variable would be the energy consumption calculated every period defined, for example every month. The independent variables (not all, but the most important ones) would be the exterior temperature and the number of inhabitants each month. Nevertheless, in that case, the impact of the temperature only quantifies the correlation between energy consumption, mainly due to heating and/or cooling systems, and exterior conditions, without considering the impact of user's behaviour. In that sense, an alternative pair of variables such as the Cooling degree-days (CDD) and the Heating degree-days (HDD), which compare the difference between a reference temperature for cooling and heating equipment, can be introduced.

2.1.2.3 Regression techniques

As explained previously, regression techniques serve to verify if different variables have a consistent relationship between them, thanks to the regression analysis. If this relationship is verified, then the regression model selected to make the analysis serve to define how the dependent variable will behave under the influence on the independent variables. The process to follow involves:

1) Identify all independent variables having real impact on energy consumption.

2) Collect and process data for all variables (dependent and independent) in order to get values for the same number of observations and periods of time, assuring its consistency. During this period, the existence of non-routine events affecting the dependent variable shall be also registered, in order to discard or adjust the corresponding values of the dependent variable accordingly.

3) Select the model and apply it to the collected data

When selecting the regression model, different regression techniques can be chosen, each one serving for different purposes, but the most important ones are those classified as *Linear regression models*, that assume a linear relationship between dependent and independent variables. It can be simple linear regression (a single independent variable) or multiple linear regression (more than one independent variable), and the linear regression equation has already been presented above.

Nevertheless, in some cases systems are dependent on a variable but only above and/or below a specific value. In that sense, simple regression change point models...
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

can be described in the same way than simple regression techniques but considering the impact of these changes. A representative example would be the case of certain cooling systems whose energy consumption present linear variations with outdoors temperature up to a certain value below which cooling is not needed.

Other cases may require using non-linear regression equations, whose general equation can be described as follows:

\[y = f(x, \theta) + \varepsilon \]

Where \(f \) is a non-linear function base on some unknown parameters \(\theta \). A typical example would be the polynomial regression;

\[y = a \cdot x^2 + b \cdot x + c \]

Where \(a, b \) and \(c \) represent the unknown parameters \(\theta \).

4) Validate the model using adequate statistical indicators.

Finally, estimation models should be validated using statistical indicators in order to determine if baseline consumption equation is appropriate. Some of the most common ones are:

- \(R^2 \)
- P-value
- T-statistic
- Net determination bias
- Coefficient of Variation (CV)

These indicators serve to validate the model and describe how its equation fits to real data, each of one providing different measures that must be properly understood. For example, the R-Square value (\(R^2 \)) measure squares of the differences between estimated and real values, and the final ratio oscillates between 0 (no correlation) and 1 (excellent correlation). There is no general consensus on which should be the threshold to reach in order to validate the model, but commonly used value is 0.75. However, when there are two or more independent variables, the R-Square value must be corrected in order to consider the impact of adding more variables to the model.

The main advantages of using regression are its flexibility and the possibilities of extrapolating short-term measurements in order to calculate annual energy. Uncertainty can also be calculated, which allows to assess how accurate the model is, and if estimated savings are trustable or not.

Following the presented example of household consumption modelling, if a multiple linear regression model is selected, the corresponding equation would be the following:

\[y_m = \beta_0 + \beta_1 \cdot x_{1,m} + \beta_2 \cdot x_{2,m} \]

Where \(y_m \) represents the monthly energy total consumption, \(x_{1,m} \) represents the heating degree-days for each month \(m \) considered, and \(x_{2,m} \) represents the cooling degree-days, while the error term has not been considered. If the model is validated, this equation would serve to calculate adjusted energy consumption following external
conditions and the set-points of cooling and heating equipment. In addition, it would be possible to predict energy consumption assuming future weather conditions. In any case, the linear multiple regression model is obtained from a sample of real data including pair of values of energy consumption, HDD and CDD. The results of this model taking fictitious energy consumption data for a household located in the south of Spain would be the following when represented on a graph:

![Figure 4: Linear model of monthly energy consumption (example)](image)

2.1.3 Simulation models and tools

As already described in chapter 2.1.1 it is resulted that in several cases there need to be a simulated calibration for the interventions, which has also been defined in Deliverable 5.1 “Technical evaluation procedure”. This subchapter aims to describe the simulation methodology to be used where models for baseline in energy interventions are necessary. It is necessary as it is the option D calibrated simulation, which has been defined in 2.1.1.

For each case, a description of the simulation methodology needs to be done and can be implemented in the already given and introduced template of 2.1.1. The description involves the following information:

- Tool set and its characteristics
- Model description and boundaries
- Input data required
- Output data obtained
- Assumptions

Tool set and characteristics
There are several tools that can be used to implement simulation methodologies. The MAtechUP lighthouse cities are free to decide which tool they prefer. Within the column “tool set and characteristics” the responsible partner needs to describe the tool and its characteristics.

These tools must be able to accurately simulate the building performance as well as energy supply system and corresponding energy management behaviour with an hourly or less temporal resolution.

Simulation tool sets and characteristics in Dresden

In Dresden, the linked third party EA Systems GmbH Dresden, which is mainly in charge with the simulation models of most of the interventions / actions, uses the versatile, non-causal, multi-physical, Modelica™-based simulation environment SimulationX and the included Green City simulation library which provides a wide range energy supply and storage systems models as well as an easy-to-use and valid platform for building performance simulation. For occupants’ behaviour simulation this tool set will be coupled via Functional Mockup Interface (FMI) to common multi-agent-simulation tools (e.g. Netlogo).

Besides building and energy system models including energy management as well as co-simulation of probabilistic occupancy models, charging infrastructures as well as electric vehicle fleets are integral part of this simulation environment. It additionally considers security of supply as well as profitableness requirements and regards local building regulations.

All simulation models are furthermore designed to be easily scaled-up from single-building to city-district level. Thus, enables EASD to calculate coupled electricity, heating and cooling grids for city districts as well as the interactions between energy sources, storage facilities, lines and consumers in a large-scale manner. The models therefore, help to realize a MAtechUP core concept regarding the up-scaling of single optimization measures to a whole city district area.

Model description and boundaries

Most important for the deliverable D3.2 is the description of the implemented models and corresponding boundaries that occur with the use of the simulation.

As the level of calibration is the most important factor for us, we need to ensure that the simulation model should reasonably predict the load shape and energy use of the facility or system.

Because of measurement boundaries of every model, there also need to be a description of the existing ones including their effects.

In Dresden, there are at least 4 energy interventions planned which more or less use simulation models during the design, baseline definition as well as the monitoring phase. Those models address both buildings as well as city-district levels. Further information about the simulation model can be found within chapter 3.

Besides the analysis and evaluation of single interventions, in MAtechUP all energy interventions need to be scaled-up to be total city-quarter size. Therefore, EASD’s simulation approaches will be used to implement a city district model on data base
level. Therefore, a huge number of anonymised energy consumption data is used to represent total energy consumption in the MAtechUP city quarter Johannstadt. This model will then be added with the results of the optimization measures of all single energy interventions. Thus helps to evaluate both influences of single interventions on total energy consumption as well as a prediction the total effect of all measures in combination. Within district model, connected interventions from other sectors (e.g. implementation of an e-Mobility charging infrastructure) can be added and evaluated, too. This district model will obviously be less accurate as all single building models. However, the expected results will be accurate enough to compare different measures in the MAtechUP context.

Input data required

The calibration of the models shall be done by collecting the necessary data related to the building characteristics and occupancy. Most likely the data that will be required are operating characteristics, occupancy, weather, loads and equipment efficiency. For different interventions other different input data for the simulation model are required. Within the identification of the simulation models, there will be a listing and definition of input data identified to comprehend the outcome of the simulation.

The developed and required models for energy interventions in Dresden mainly refer to different types of buildings as well as occupancy. These different models require most likely the same set of input parameters, if available:

- Building construction plans; definition of refurbishment measures; building age, characteristic and occupancy type
- Available measurement data of at least one recent year (existing buildings) regarding heat, natural gas, electricity, cold, etc. consumption
- Description and design plans of power supply and HVAC system including brief overview of control schematic
- District plans (for district models) and included grid design (electricity, heat, natural gas, cold, infrastructure, etc.)
- Datasheets of technical systems (manufacturer data) including relevant performance data

Output data obtained

The obtained output data of the simulation are necessary to identify the baseline of interventions definition. A list of the data will be included for every intervention.

The collected data can include, for instance, the use of sub-metering by placement of monitoring equipment to collect data from the building automation system when available. These data can be useful, for instance for defining operational schedules (e.g. lighting, ventilation), and calibrating the model. ¹¹

¹¹ cf. D5.1, p.50
The energy intervention models in Dresden have been designed to provide feasible data and information about the implemented modernization measures for those aspects with missing or non-applicable or at least not available measurement data.

Normally, building performance models as well as HVAC system, power supply and grid models can provide following general list of outputs:

- Gains and consumption of different forms of energy (e.g. local renewables, heating, cooling and power supply, etc.)
- Evaluation of dimensions and feasibility of technical system components (e.g. photovoltaic or battery system size)
- Analyses of total (or individual) costs (operation and investment) and total profitableness
- Evaluation of different strategies for storage control and energy management
- Evaluation and analyses of different performance optimization measures

In MAtchUP, the implemented energy interventions models provide different specific outputs regarding the individual actions / interventions that will be identified in chapter 3.

Assumptions

With every identified intervention of option D that comes along with a simulation of the indicator bundle, several assumptions are related. A description of them can help to identify boundaries and predictions.

Option Template

With the description of the further information about the simulation tools the template given by IPMVP is now enlarged with five more columns:

Table 5: Extended IPMVP Option Template

<table>
<thead>
<tr>
<th>Involved Action</th>
<th>Savings</th>
<th>Affected Equipment</th>
<th>Expected Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a list of involved actions</td>
<td>Describe in brief how the measure saves energy or other resources (e.g., reduction of energy)</td>
<td>Provide a list of affected physical equipment</td>
<td>A preliminary result on expected savings</td>
</tr>
</tbody>
</table>

IPMVP Option Selection Guidance

Follow each question starting from 1. Highlight choice of selection with a colour.

<table>
<thead>
<tr>
<th>Intervention Characteristics</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2] Able to isolate Actions(s) with meter(s)?</td>
<td>Please go to [4]</td>
<td>Please go to [3]</td>
</tr>
<tr>
<td>Question</td>
<td>Option</td>
<td>Action</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>[5] Need to separately assess each Action?</td>
<td>OPTION D</td>
<td>Please go to [6B]</td>
</tr>
<tr>
<td>[6B] Missing baseline period data?</td>
<td>OPTION D</td>
<td>OPTION A</td>
</tr>
<tr>
<td>[6C] Missing baseline period data</td>
<td>OPTION D</td>
<td>OPTION C</td>
</tr>
</tbody>
</table>

Measurement Boundary

The selection of IPMVP Option needs to be complemented with defining the measurement boundary. A brief description or figure demonstrating the measurement boundary will be included under this section.

Indicators

Include indicators that are relevant to the simulation scope.

Baseline Period

This is the time period over which the facility or system baseline conditions are assessed and documented. This baseline period is often a year but can be any period depending on the specific needs.

Simulation models and tools

The following columns need to be filled with information about the simulation models and tools within the intervention.

<table>
<thead>
<tr>
<th>Tool set and characteristics</th>
<th>Name simulation tool and describe its characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model description and boundaries</td>
<td>Describe model and boundaries that may occur</td>
</tr>
<tr>
<td>Input data required</td>
<td>List input data that is required for the simulation</td>
</tr>
<tr>
<td>Output data obtained</td>
<td>List output data that is obtained after the simulation</td>
</tr>
<tr>
<td>Assumptions</td>
<td>Identification and description of given assumptions of/for the simulation</td>
</tr>
</tbody>
</table>

German Relevant Building Law and Legislation

According to the EU Directive “Energy Performance of Buildings” [EPBD 2010], new residential buildings constructed after 31 December 2020 must be designed as low-energy buildings. The EU Directive defines a “low-energy building” as “house with very high (…) overall energy efficiency”. The almost zero or very low energy demand should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced at or near the site. In Germany, the introduction of Nearly Zero-Energy Buildings (NZEB) has already been addressed by

12 European Commission (2019): online
the German Energy Savings Act of 2013 [EnEG 2013]. The EnEG provides a further amendment of the Energy Saving Ordinance (EnEV) until 2019 (which comes into force in January 2021). However, an official definition of the NZEB standard is not contained in the EnEG and has not yet been published by the Federal Government. Even though there is still no legally regulated definition, the “KfW Efficiency House 40” can be seen as a suitable standard to represent the lowest energy house for residential buildings in Germany demanded by the EU, since buildings of this or similar quality have already been the subject of KfW funding for more than 10 years.

Two sets of regulations currently apply to the energy requirements for buildings in Germany. The Energy Saving Act (EnEG) and the Energy Saving Ordinance (EnEV) describe the energetic requirements of the building envelope and the energy supply system. The Renewable Energies Heat Act (EEWärmeG) stipulates that renewable energies for heating purposes must be used to a specified extent in new buildings and existing public-sector buildings. The coexistence of these regulations has led to problems in application and enforcement, especially as the two regulations were not fully coordinated. In 2019, a new draft act has been implemented on Energy Saving and the Use of Renewable Energies for heating and cooling in buildings that combines EnEG, EnEV and EEWärmeG, which is called Building Energy Act (GEG).

Table 6: Regulations for buildings in Germany

<table>
<thead>
<tr>
<th>Residential Buildings</th>
<th>Scale (National, Regional, Local, etc...)</th>
<th>Building requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Buildings</td>
<td>National (EnEV 2016)</td>
<td>All new buildings must be designed as low-energy buildings: the annual primary energy demand for heating, hot water, ventilation and cooling does not exceed 0.75 times the annual primary energy demand value in relation to the useful building area of a reference building having the same geometry, useful building area and orientation as the building to be constructed</td>
</tr>
</tbody>
</table>

13 EnEV-online (2019a): online
2.2 Models for baseline in mobility interventions

Within the finding process, we noticed that there are no baselines in mobility interventions necessary. Therefore nor mathematical models for baseline adjustments neither simulation models and tools are needed.

2.3 Models for baseline in ICT interventions

Within the finding process, we noticed that there are no baselines in ICT interventions necessary. Therefore nor mathematical models for baseline adjustments neither simulation models and tools are needed.

2.4 Models for baselines in non-technical interventions

Within the finding process, we noticed that there are baselines in non-technical interventions necessary. Therefore nor mathematical models for baseline adjustments neither simulation models and tools are needed.

14 EnEV-online (2019b): online
3 Interventions / Indicators requiring baseline simulation or adjustment

In Dresden, several energy interventions have been identified as option D regarding IPMVP. These interventions need simulation models to be evaluated at building/facility level. An introduction of the actions of the interventions and information about the identified IPMVP options will be given.

3.1 Intervention 1 New building constriction (District future House)

This intervention includes 5 actions. Suitable simulation models are used or can be used during intervention design for the individual action’s purposes. However, new buildings cannot provide any energy consumption data before the intervention at all one suitable baseline model is required at least.

The following technical indicators (Task 5.1) are intended to be calculated for content-related Actions as Intervention 1.

Table 7: Option Template for Intervention 1

<table>
<thead>
<tr>
<th>Involved Action</th>
<th>Savings</th>
<th>Affected Equipment</th>
<th>Expected Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9, A41, A42, A43, A53</td>
<td>expected own consumption rate of PV of up to 68%, raised by the use of battery up to 76%; expected degree of self-sufficiency up to 40%; large amounts of CO2 emissions and fine dust by using the district heating network heat generated during the production of electricity (combined heat and power)</td>
<td>PV system 9.92 kWh; high-performance modules with 320 Wp each; power generation 9,200kWh p.a.; Varta storage system with nominal capacity of 3,3 kWh, Smart Meter/measurement equipment, energy management systems (Smart Home Real Estate Industry (“RIECON” system)</td>
<td>Tenants energy model “MeinMieterstrom” will be offered with a price line 0.5 ct/kWh below the basic supply tariff of ”Dresdner Strom.”; savings of about 11 tons/year or 79% of CO2-emissions by district heated building, compared to natural gas based heating system</td>
</tr>
</tbody>
</table>

IPMVP Option Selection Guidance

Follow each question starting from 1. Highlight choice of selection with a colour.

<table>
<thead>
<tr>
<th>Intervention Characteristics</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2] Able to isolate Actions(s) with meter(s)?</td>
<td>YES</td>
<td>---</td>
</tr>
<tr>
<td>[3] Are expected savings greater than 10%?</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Need full performance demonstration?</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>Need to separately assess each Action?</td>
<td>---</td>
</tr>
<tr>
<td>6A</td>
<td>Missing baseline period data?</td>
<td>OPTION D</td>
</tr>
<tr>
<td>6B</td>
<td>Missing baseline period data?</td>
<td>---</td>
</tr>
</tbody>
</table>

Measurement Boundary

As data for baseline is not available (new building), several boundary conditions are needed to describe the entire building:

1. According to the German legislation (EnEV), calculations will base on a “reference building”, heated by natural gas.
2. Baseline-Data are taken from BEST-table: National regulations for new building; multiplied by the floor area (EnEV 2016 for New Buildings after 2016)
3. Locally generated electricity reduces the primary energy consumption.
4. Usage of living space as reference base for the floor area.

Following indicators are accordingly analysed:

- **E1:** Describes the primary energy consumption that is supplied to the system by natural energy sources. Measurement relevant relations consist of the size of the system and the considered time interval. The reporting in the SCIS consists of three phases: refurbished buildings (baseline, design, monitoring), new buildings (reference energy consumption), similar buildings (base of simulations). Unit.: kWh/(m²*year)
- **E3:** Percentage increase in the share of local renewable energy due to the intervention. It is separately determined for thermal (heating or cooling) energy and electricity. Unit.: kWh/month
- **E4:** CO2 emissions can therefore be considered a useful indicator for assessing the impact of urban development in climate changes. Unit.: Change in t/year
- **E5:** The maximum consumption of a building or building groups is analysed and then forecast by an aggregator implementation. Measurement dependencies exist here in the time interval of the measurements. Unit.: %, Interval: before and after intervention
- **E8:** Measured time in hours in case of electricity interruption. Unit.: %, Interval: Monthly or according to the demo period
- **E11:** Monetary savings from the functionality over a period of time / hours in the period of time Unit.: €/h or €/year, Interval: Monthly or according to the demo period

Indicators

- E1. Reduction in primary energy demand and consumption
- E3. Increase in local renewable energy generation
- E4. CO2 emission reduction
- E5. Peak load reduction
- E8. Storage capacity factor
- E11. Benefit of storage use

Baseline Period

Baseline M24
M31
M37
M43
M49
Simulation models and tools

<table>
<thead>
<tr>
<th>M55</th>
<th>M60</th>
</tr>
</thead>
</table>

In Dresden, the linked third party EA Systems GmbH Dresden, which is mainly in charge with the simulation models of most of the interventions / actions, uses the versatile, non-causal, multi-physical, Modelica™-based simulation environment SimulationX and the included Green City simulation library which provides a wide range energy supply and storage systems models as well as an easy-to-use and valid platform for building performance simulation. For occupants' behaviour simulation this tool set will be coupled via Functional Mockup Interface (FMI) to common multi-agent-simulation tools (e.g. Netlogo).

Besides building and energy system models including energy management as well as co-simulation of probabilistic occupancy models, charging infrastructures as well as electric vehicle fleets are integral part of this simulation environment. It additionally considers security of supply as well as profitability requirements and regards local building regulations.

All simulation models are furthermore designed to be easily scaled-up from single-building to city-district level and size. Thus, enables EASD to calculate coupled electricity, heating and cooling grids for city districts as well as the interactions between energy sources, storage facilities, lines and consumers in a large-scale manner. The models therefore help to realize a MAtchUP core concept regarding the up-scaling of single optimization measures to a whole city district area.

The District Future House with its latest HVAC system design (e.g. controlled ventilation of living spaces) has an additional task within MAtchUP. Besides analyses of technical and economical KPIs (e.g. to evaluate tenant power supply concept), it has been built to provide the baseline data of future monitoring data. Therefore, the model will be additionally updated with general German law related building envelope and energy system data. Those values can be set as baseline, especially for the technical KPIs describing energetic behaviour of a basic building setup which equally fits German regulation. And again, resultant model results are the base of further up-scaled district models describing the behaviour of newly-built buildings. However, it is obvious that those simulation results cannot be calibrated with existing measurements, the model has only be compared to same-size and type buildings, thus might result in higher deviations between simulation results and measurements in comparison with A1 and A2 models but should be still in an adequate range.

The developed and required models for energy interventions in Dresden mainly refer to different types of buildings as well as occupancy. These different models require most likely the same set of input parameters, if available:

- Building construction plans; definition of refurbishment measures; building age, characteristic and occupancy type
- Available measurement data of at least one recent year (existing buildings) regarding heat, natural gas, electricity, cold, etc. consumption
- Description and design plans of power supply and HVAC system including brief overview of control schematic

Tool set and characteristics

Model description and boundaries

Input data required
Output data obtained

- District plans (for district models) and included grid design (electricity, heat, natural gas, cold, infrastructure, etc.)
- Datasheets of technical systems (manufacturer data) including relevant performance data

Normally, building performance models as well as HVAC system, power supply and grid models can provide following general list of outputs:

- Gains and consumption of different forms of energy (e.g. local renewables, heating, cooling and power supply, etc.)
- Evaluation of dimensions and feasibility of technical system components (e.g. photovoltaic or battery system size)
- Analyses of total (or individual) costs (operation and investment) and total profitableness
- Evaluation of different strategies for storage control and energy management
- Evaluation and analyses of different performance optimization measures

A9 – District Future House / newly-built building smaller multi-family residential building:

- Evaluation of PV system and battery size regarding tenant electricity concept
- Total energy and peak power demand of building before and after interventions
- Share of building’s self-consumption rate (tenants, general building operation)
- Evaluation of implemented battery storage control strategy; profitableness of storage integration
- Economic evaluation of different tenant electricity concepts
- Baseline for KPI evaluation

Assumptions

For intervention 1, simulation models are mainly used to identify a baseline for the comparison of the implemented add-on high-energy-efficiency measures with required basic energy-efficiency ratios of new built buildings in Germany.

The implemented baseline model therefore bases on German VDI 2078 standard to represent building’s thermal energy consumption as well as common occupancy statistics. Furthermore, material data as well as the baseline definition of German EnEV 2016 legislation provides add-on assumption for the baseline model development.

Action 09: District Future House

District Future House will be a housing cooperative with 2,287 m² (living space 1,191 m²) distributed in 14 dwellings. Its thermal demand will be covered through the DH while up to 40% of the electric one by the PV installed in the building (Action 41). Several "individual" technologies will be tested together in this new building. The Smart Meter/Smart Meter Gateway-system (Action 43) will provide opportunities which need to be applied under real conditions to produce several benefits for the tenants.

The interaction between the classical supply concepts (district heating station), the technical building equipment (heating system, central domestic hot water preparation) and the additional technologies will be tested both technically and communicatively,
and fully monitored among all the building. In addition to the energy-related part (consumption “house” and "housing" over all media, tenant electricity model, load-variable tariffs ...), other services and housing management should also be possible via the energy management system. Data transmission within the property and "outwards" (both for measuring point operation and for sub-meter) is to be carried out through the iMSys system as a modern communication infrastructure. Relating the energy management of this future house, it will be a smart building, which is managed by hierarchic management systems – one for the entire building and one for each single flat. The following functions are more possibilities need to be finalized during the project.

Dwelling Energy Manager, will be the future central information and communication platform for tenants. It will provide information on demand of electricity, heat, water. The tenant will be able to choose ventilation, temperatures and times at this central service unit of for his apartment. There are different sensors for temperature and actors (floor heating valves). All the data are submitted to the Building Management and participate in optimizing the heat consumption. Information of the property management, weather forecast, contact data of housekeeper and others are given on the home display too. In addition, the consumption of the flat can be monitored by the tenant via his display.

Building Energy Manager: This collects and achieves all relevant data from the Dwelling Energy Manager. It regulates the central district heat feed-in and the central building ventilation.

The modern District Future House with its latest HVAC system design (e.g. controlled ventilation of living spaces) has an additional task within MAchUP. Besides analyses of technical and economical KPIs (e.g. to evaluate tenant power supply concept), it has been built to provide the baseline data of future monitoring data. Therefore, the model will be additionally updated with general German law related building envelope and energy system data. Those values can be set as baseline, especially for the technical KPIs describing energetic behaviour of a basic building setup which equally fits German regulation. And again, resultant model outcomes are the base of further up-scaled district models describing the behaviour of newly-built buildings. However, it is obvious that those simulation results cannot be calibrated with existing measurements, the model has only be compared to same-size and type buildings, thus might result in higher deviations between simulation results and measurements in comparison with A1 and A2 models but should be still in an adequate range.

Action 41: 8.7 kWp photovoltaic system in District Future House

1st amendment version

In the District Future House that will be built inside the project (Action 9), PV energy will be produced and stored in the building itself. With a nominal power of 8.7 kWp and a generation of 950 kWh/kWp the solar panels installed will be able to provide the 75% of the energy demanded by the building. For the installation of the PV panels, two different concepts will be taking into consideration, aligning south and aligning east-west. Both concepts differ in the
installable capacity and the time of production, so the decision will be made by taking into account statics of the roof, the costs and the benefit (maximum use of the RES in the building).

2nd amendment version

In the District Future House that will be built inside the project (Action 9), PV energy will be produced and stored in the building itself. With a nominal power of 9.92 kWp and a generation of 920 kWh/kWp the solar panels installed will be able to provide the 40% of the energy demanded by the building. An own consumption rate of appr. 68% will be achieved and rised by the use of battery up to 76%. For the installation of the PV panels, two different concepts will be taken into consideration, aligning south and aligning east-west. Both concepts differ in the installable capacity and the time of production, so the decision will be made by taking into account statics of the roof, the costs and the benefit (maximum use of the RES in the building).

No mathematical model needed as measurements should be available via monitoring data and a baseline is not necessary, as the output is 0 kWh of PV power. A Simulation model can only be used to optimize the control strategy regarding self-consumption ratio, if necessary.

Action 42: Power storage in District Future House

1st amendment version

For a better management of the PV power generated in the District Future House (Action 41), a Mercedes-Energy Storage system with a nominal capacity of 4.6 kWh will be installed (Action 9). The energy from this storage will be used for covering the building demand, but the possibility to be used for Electrical Vehicle charging will exist in the future.

2nd amendment version

For a better management of the PV power generated in the District Future House (Action 41), a Varta-Energy Storage system with a nominal capacity of 3.3 kWh will be installed (Action 9). The energy from this storage will be used for covering the building demand, but the possibility to be used for Electrical Vehicle charging will exist in the future.

No model is required for baseline definition as 0 kWh of battery capacity is available. Control strategy optimization (especially eVehicle charging with battery power) might require suitable models.

Action 43: Smart-meter-gateway in District Future House

In the District Future House (Action 9) one of the main project targets is to implement a joint metering concept for all media in the building – such as electricity, natural gas, (district) heat and (hot and cold) water. The energy management systems provide information to the tenant and the entire building. A reduction of the energy demand, hence resource-saving by a control-system is going to be enabled by active involvement of the tenants. The expectations in the —Future Housell-project are to find a scalable and useful solution for other apartment buildings in the city of Dresden.
All the flats are going to be integrated into a complete metering and management system by submeters. The projected configuration of electric submeters includes different shared electricity objects such as light, ventilation, circulation pumps, electronic information tables, elevators, smoke evacuator etc. Therefore, submetering systems are needed for heat cost allocation (for heating and domestic hot water) and will be additionally used for the management of drinking cold water. The entire building will be prepared for a future secure and reliable communications infrastructure. Additional equipment with empty conduits is designed for uncertain future communications requirements (wide-area-network – WAN) and future services. This smart-meter-gateway will provide data to Dresden Urban Platform.

Simulation models can show the influences of smart metering and control with baseline models including default (not smart) control strategies.

Action 53: Connection of new buildings to the DH

To increase the smart interaction and smart management of the DH, the smart new building constructed inside the MAtchUP project, the District Future House (Action 9) will be connected to it. With the actual existing infrastructure, new users will be benefited by the central energy management, increasing efficiency and decreasing costs.

A simulation model is required to represent the baseline if building’s energy consumption is supplied with heat by conventional heat supply system (c.f. EnEV 2016 gas fired condensing boiler).

3.2 Intervention 2 - Retrofitting of private residential buildings

This intervention includes four actions. Simulation models are mainly required during the design phase of single actions as well as the evaluation of different control and implementation strategies. Some actions with obviously uneconomical output are only considered with simulation models. Furthermore, those models are used to scale-up intervention results to the whole district level.

Table 8: Option Template for Intervention 2

<table>
<thead>
<tr>
<th>Involved Action</th>
<th>Savings</th>
<th>Affected Equipment</th>
<th>Expected Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, A4, A5, A18</td>
<td>Reduction of CO2 emissions; especially by integration of electromobility in conjunction with PV system;</td>
<td>Smart Energy systems with intelligent linkage of PVs and storage; Smart Meter/ measuring equipment; PV system with 33 kWp, power generation 30,000 kWh p.a., specific solar yield 900 kWh/kWp</td>
<td>With an electricity consumption of 1,400 kWh per year, the electricity costs decrease by up to 10% compared to the previous electricity bill; tenants energy model “MeinMieterstrom” will be offered with a price line 0.5 ct/kWh the basic supply tariff of “Dresdner.Strom.Privat” using...</td>
</tr>
</tbody>
</table>
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

| the CO2 intensity of the German electricity mix (471 g/kWh), this PV system will save approximately 14,1 t of CO2 per year |

IPMVP Option Selection Guidance

Follow each question starting from 1. Highlight choice of selection with a colour.

<table>
<thead>
<tr>
<th>Intervention Characteristics</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2] Able to isolate Actions(s) with meter(s)?</td>
<td>---</td>
<td>NO</td>
</tr>
<tr>
<td>[3] Are expected savings greater than 10%?</td>
<td>YES</td>
<td>---</td>
</tr>
<tr>
<td>[6A] Missing baseline period data?</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[6B] Missing baseline period data?</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Measurement Boundary

As data for baseline is not available for all data required, several boundary conditions are needed to describe the entire building:

1. Power generation of the new photovoltaic system (including grid feed-in of electricity surplus) is taken into account to reduce emissions
2. CO2 emissions from electricity consumption are determined on the basis of Germany’s energy source mix according to the German electricity labelling system

Following indicators are accordingly analysed:

E1: Describes the primary energy consumption that is supplied to the system by natural energy sources. Measurement relevant relations consist of the size of the system and the considered time interval. The reporting in the SCIS consists of three phases: refurbished buildings (baseline, design, monitoring), new buildings (reference energy consumption), similar buildings (base of simulations). Unit.: kWh/(m²*year)

E3: Percentage increase in the share of local renewable energy due to the intervention. It is separately determined for thermal (heating or cooling) energy and electricity. Unit.: %

E4: CO2 emissions can therefore be considered a useful indicator for assessing the impact of urban development in climate changes. Unit.: t/year

E5: The maximum consumption of a building or building groups is analysed and then forecast by an aggregator implementation. Measurement dependencies exist here in the time interval of the measurements. Unit.: %, Interval: before and after intervention

<table>
<thead>
<tr>
<th>Indicators</th>
<th>- E1. Reduction in primary energy demand and consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- E3. Increase in local renewable energy generation</td>
</tr>
<tr>
<td></td>
<td>- E4. CO2 emission reduction</td>
</tr>
</tbody>
</table>
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

<table>
<thead>
<tr>
<th>- E5. Peak load reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Period</td>
</tr>
<tr>
<td>M24</td>
</tr>
<tr>
<td>M31</td>
</tr>
<tr>
<td>M37</td>
</tr>
<tr>
<td>M43</td>
</tr>
<tr>
<td>M49</td>
</tr>
<tr>
<td>M55</td>
</tr>
<tr>
<td>M60</td>
</tr>
</tbody>
</table>

Simulation models and tools

<table>
<thead>
<tr>
<th>Tool set and characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Dresden, the linked third party EA Systems GmbH Dresden, which is mainly in charge with the simulation models of most of the interventions / actions, uses the versatile, non-causal, multi-physical, Modelica™-based simulation environment SimulationX and the included Green City simulation library which provides a wide range energy supply and storage systems models as well as an easy-to-use and valid platform for building performance simulation. For occupants' behaviour simulation this tool set will be coupled via Functional Mockup Interface (FMI) to common multi-agent-simulation tools (e.g. Netlogo). Besides building and energy system models including energy management as well as co-simulation of probabilistic occupancy models, charging infrastructures as well as electric vehicle fleets are integral part of this simulation environment. It additionally considers security of supply as well as profitability requirements and regards local building regulations. All simulation models are furthermore designed to be easily scaled-up from single-building to city-district level and size. Thus, enables EASD to calculate coupled electricity, heating and cooling grids for city districts as well as the interactions between energy sources, storage facilities, lines and consumers in a large-scale manner. The models therefore help to realize a MAtrchUP core concept regarding the up-scaling of single optimization measures to a whole city district area.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model description and boundaries</th>
</tr>
</thead>
</table>
| In A1, a simulation model of an existing multi-storey residential building has been implemented which mainly helps to analyse influences of different PV system and battery sizes on both technical KPIs (e.g. energy consumption reduction, peak-load-reduction, autarky rate increase, etc.) as well as economical KPIs and measures, like the newly developed and tested renewable tenant power supply. This model has been calibrated with measurement data of several recent years regarding heat and power consumption and is therefore highly accurate. It includes a co-simulation of tenants' behaviour with the multi-agent-simulation platform Netlogo and SimulationX. The resultant simulation results can further be used to scale-up those measures to the total district for the whole number of existing residential buildings. In MAtrchUP, all energy interventions need to be scaled-up to be total city quarter size. Therefore, EASD's simulation approaches will be used to implement a city district model on data base level. Therefore, a huge number of anonymised energy consumption data is used to represent total energy consumption in the MAtrchUP city quarter Johannstadt. This model will then be added with the results of the optimization.
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

<table>
<thead>
<tr>
<th>Input data required</th>
<th>Output data obtained</th>
</tr>
</thead>
</table>
| Measures of all single energy interventions. Thus helps to evaluate both influences of single interventions on total energy consumption as well as a prediction the total effect of all measures in combination. Within district model, connected interventions from other sectors (e.g. implementation of an e-Mobility charging infrastructure) can be added and evaluated, too. This district model will obviously be less accurate as all single building models. However, the expected results will be accurate enough to compare different measures in the MAtchUP context. | The developed and required models for energy interventions in Dresden mainly refer to different types of buildings as well as occupancy. These different models require most likely the same set of input parameters, if available:
- Building construction plans; definition of refurbishment measures; building age, characteristic and occupancy type
- Available measurement data of at least one recent year (existing buildings) regarding heat, natural gas, electricity, cold, etc. consumption
- Description and design plans of power supply and HVAC system including brief overview of control schematic
- District plans (for district models) and included grid design (electricity, heat, natural gas, cold, infrastructure, etc.)
 Datasheets of technical systems (manufacturer data) including relevant performance data

| Normally, building performance models as well as HVAC system, power supply and grid models can provide following general list of outputs:
- Gains and consumption of different forms of energy (e.g. local renewables, heating, cooling and power supply, etc.)
- Evaluation of dimensions and feasibility of technical system components (e.g. photovoltaic or battery system size)
- Analyses of total (or individual) costs (operation and investment) and total profitableness
- Evaluation of different strategies for storage control and energy management
- Evaluation and analyses of different performance optimization measures
A1 – Smart tenant / existing multi-storey residential buildings:
- Evaluation of PV system and battery size regarding tenant electricity concept
- Total energy and peak power demand of building before and after interventions
- Share of building’s self-consumption rate (tenants, general building operation)
- Evaluation of implemented battery storage control strategy; profitableness of storage integration
- Economic evaluation of different tenant electricity concepts
A5 / A18 – District model:
- Evaluation of grid optimization measures (e.g. district heating grid)
- Analyses of advanced integration of E-Mobility charging infrastructure (sector coupling)
- Up-scaling of single interventions to total district level
- Baseline and up-scaled simulation data for KPI evaluation |
Assumptions

The implemented models, mainly used to evaluate different approaches of action implementation, include a comparatively high number of assumptions. First of all, A1 model are mainly based on multi-agent-simulation model representing occupancy behaviour of tenants. Those models provide statistically-approved results but can significantly differ from real-world data from time to time.

Further assumptions consider the implemented district models for district storage evaluation (A18). These models include a high number of spatially-distributed input data sets describing total energy consumption of buildings, grid configuration and infrastructure usage. These data is valid but has a low temporal resolution. The derived model input data sets describing time continuous consumption profiles is based on common engineering assumptions as well as available standard load profiles.

Action 01: Smart tenants

With the objective to increase the flexibility of the Smart Energy Systems, tenant electricity models will be promoted through this action. Through tenant electricity models, tenants are allowed to use the generated energy from renewable energies themselves in their quarters. The intelligent linkage of photovoltaics (Action 4) and storage (Actions 5 & 18) decouples on-site production and consumption and increases the autonomy of the district. This can increase the attractiveness of tenant flows and enable economic and ecological participation in the urban energy market for a large number of tenants. Integration of electromobility (Action 23) in conjunction with the photovoltaic system, the indirect CO2 emissions from the electric vehicles can thus be further reduced and a positive contribution to the energy balance of the district can be achieved. As a result of the reduction in the feed-in into the public electricity grid, expected peaks in consumption and decentralized production will be reduced in the future (Action 54). The consumption-oriented and -oriented expansion of renewable energies in the district is thus promoted.

For taken decisions among the different stakeholders involved in this action, providing information for tenants and power producers about their feed-in, consumption or efficiency is one of the main aspects to treat. For this, the buildings (Action 7) will have installed Intelligent metering systems (iMSys) that consists of modern measuring equipment (mME) and a smart meter gateway (SMGW), which collects, stores and transmits measured values to authorized market participants (AMT), taking into account the requirements of the BSI (high data protection and data security requirements). The implementation of iMsys provides the basis for the information and communication technology for linking the previously separate energy systems. Imsys are remotely communicable electricity meters that meet the high data protection and data security requirements. The iMSys are connected to the Urban Platform by gateway (SMGW-Smart Meter Gateway), which allows remote access via a communication link (based on the ICT infrastructure). The data from the gateway is then made available through the Urban Platform. The group of producers (CHP, PVA) is integrated into the iMSys via the control box. The active market partners (aAMP) form the authorized subscriber body who communicate the switching operations via the
secure ICT infrastructure of the control box. Hence, iMsys allow only the previously sketched concepts as well as the provision of information to among other things on-site production, consumption, CO2 savings and efficiency for a “smart” tenant.

Additionally to the monitoring of the dwellings, simulation will be used for creating functional connections between modules like photovoltaics, storage batteries, controlled EV charging infrastructure as well as HVAC and district heating adds a lot of complexity to the energy system. Also to layout and test these systems regarding component sizing and functional interaction using dynamic systems simulation based on Modelica, is state of the art. For the simulation, computational models of battery storages, buildings user behavior, etc. are connected in the proposed layout and functionality of the future district. The system is then valuated for typical usage scenarios, and afterwards the model gets adjusted until the system works as desired. Based on the results, the real world components are built. So, this process helps to reduce in site commissioning efforts and greatly improves quality. Currently these technologies are mainly used for high profile buildings.

In A1, a simulation model of an existing multi-storey residential building has been implemented which mainly helps to analyse influences of different PV system and battery sizes on both technical KPIs (e.g. energy consumption reduction, peak-load-reduction, autarky rate increase, etc.) as well as economical KPIs and measures, like the newly developed and tested renewable tenant power supply. This model has been calibrated with measurement data of several recent years regarding heat and power consumption and is therefore highly accurate. It includes a co-simulation of tenants’ behaviour with the multi-agent-simulation platform Netlogo and SimulationX. The resultant simulation results can further be used to scale-up those measures to the total district for the whole number of existing residential buildings.

Action 04: 226kWp photovoltaic system on existing buildings (1st amendment version)

Action 04: 33kWp photovoltaic system on existing buildings (2nd amendment version)

1st amendment version

A photovoltaic system will be installed on the existing buildings that were constructed between 1960-1970 and will be retrofitted inside the MAtchUP project (Action 7). In the 680 flats that comprise these buildings located on Pfortenhauer. Str. and Elisenstr. The total roof surface is about 4,500m2. Given the architecture, about 226 kWp of PV generation can be installed. These will be included in the potential energy storage and total annual electricity generation should sum up at around 215,000 kWh. As the total electricity consumption of the building (its inhabitants) is around 750,000 kWh/a, the 100% of PV generation will be used in the building itself. Due to the planned storage (Action 5), the generation and demand mismatch can be covered. A CO2-reduction of around 25% can be reached due to PV generation.
A photovoltaic system will be installed on the existing buildings at Blasewitzer Str. 36 a-c that were constructed in 1990. Other apartment buildings at Pfotenhauer Str. will be retrofitted inside the MAtechUP project (Action 7).

Measurements should be available via monitoring data; baseline is not necessary as the PV power output counts 0 kWh PV.

Simulation model can only be used to optimize control strategy regarding self-consumption ratio, if necessary.

Action 05: Integration of the power supply system of the retrofitted buildings with the District Storage System

1st amendment version

As larger energy storage systems are more efficient in terms of investment cost than individual ones, a District Storage System will be installed in the project (Action 18) for a better energy management of the PV energy generated by the Action 4. The connection of this District Storage System with the individual apartments and the demand management will be crucial to, ensuring the optimal service, achieve the most energy efficiency values. In this action housing needs, individual electric mobility needs and public-electric mobility (semi-public) mobility needs will be managed for ensuring the supply into the apartments.

2nd amendment version

For an integrated energy management of the PV energy generated by the Action 4 and a high level of sustainability in A1 a District Storage System is aimed to be analyzed in the project (Action 18). Therefore, the variant analysis of decentralized and centralized District Storages will be developed to evaluate proper technical, economical and repeatable storage solutions. The variant analysis will be focused on two feasible possibilities. First option is a mix of virtual connected smaller local storages connected to the EMS. Second option is one larger district storage with interfaces to the EMS. As larger energy storage systems are more efficient in terms of investment cost than smaller units.

The connection of this district storage system to the individual apartments and demand management is crucial in order to guarantee optimum service and achieve the highest energy efficiency values. This action manages the housing demand, the individual electric mobility demand and the public electric mobility demand (semi-public) in order to ensure the supply of the housing.

This Action and Action 18 are both only evaluated with models from EASD (c.f. District Model in paragraph 2.1.3) for both baseline and optimized system configuration.

Action 18: Reference Solution for a Multi-Dimensional Electric district storage

1st amendment version

Battery supported home power supply currently takes place in private real estate comprising storage capacities of e.g. 5 kWh. To allow furthermore tenants of larger apartment buildings to benefit from RES, there is the need for new business models as well as new technical concepts
to share such a district storage system with connection of several, qualitatively different consumer and producer groups in the urban (small) district. A multi-dimensional district storage of larger capacity > 100 kWh will be developed to manage the energy produced from PV panels installed inside Action 4. For promoting such participation models for tenants (Action A1) at the same time as increase the efficiency of the use of the energy (in the buildings retrofitted in Action 7) increasing the resilience with regard to the municipal supply task, in case of failures or defects. Better efficiency is expected by aggregation, thus technical redundancy can be achieved by such larger storage units. The energy management between this district storage and each building demand will be implemented in Action 5.

New business and investment models: based on rent or lease of an individual, possible dynamically sized share of the district storage. Financing model by linking to rental costs: the tenant receives a full-service arrangement including energy costs, which allows the tenant to participate in the expansion of the RES, pre-financing of the system costs by operator, long-term planning or financing horizon.

2nd amendment version

Battery supported home power supply currently takes place in private real estate comprising storage capacities of e.g. 5 kWh. Future energy market developments as well as increasing requirements on grid stability will change this situation within the upcoming decade. To already meet these challenges, the considered retrofitted buildings will be analyzed with the developed simulation models to identify break-even conditions and future state of the market regarding suitable storage sizing and integration measures. We will model the integration of a larger district storage system > 100 kW with interface to EMS (Action 5). In addition to this: Since physical integration of a multi-dimensional district storage of larger capacity > 100 kWh is not possible due to the existing technical restrictions (ratio of generated energy to consumed energy), two different feasible approaches are pursued:

(1) The use of suitable smaller storage units at the Blasewitzer Str. 36 (Action 1), will be analyzed and is aimed to be integrated into the energy system of the apartment building (Action 5) to increase the ratio of self-sufficiency for clients of the tenant energy model.

(2) The use of bigger storage systems in our lighthouse district for grid stabilization at fast charging stations is going to be implemented at the Mobility point Fetscherplatz.

In order to compare different scenarios of storage capacities and number of tenants participating, EASD have build a simulation model with SimulationX GreenCity. The model and the real building parameters are described in A1. This model of the energy system allows to variate the scenarios in a very fast and easy way and is the base to research the following use cases:

- Energetic optimization
 - increase the energy self-sufficiency
 - increase the own use proportion of solar energy
- Economic optimization
In this simulation, 66 scenarios were carried out, which should determine a useful integration of a battery storage for the apartment Blasewitzer Straße 36 a - c.

A District Model is required.

3.3 Intervention 3: District Heating

The intervention includes three actions. These actions do not necessarily require simulation models for baseline definition. However, such models can be helpful during intervention design and pre-evaluation of different technical and economical solutions.

Table 9: Option Template for Intervention 3

<table>
<thead>
<tr>
<th>Involved Action</th>
<th>Savings</th>
<th>Affected Equipment</th>
<th>Expected Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A13, A17, A36</td>
<td>• Improvement of thermal storage operation – reduction of energy losses</td>
<td>• Thermal storage units</td>
<td>1. A13, A36: Thermal storage optimization: - < 3% reduction of thermal energy losses</td>
</tr>
<tr>
<td></td>
<td>• Integration of RES into District heat (DH) system</td>
<td>• DH-pipeline to RES-generation site</td>
<td>- improvement of economics by 3..5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Central district-heat system incl. heat transfer stations</td>
<td>2. A17 (2nd Amendment) By subsequent implementation of a solarthermal unit at the Nickern site RES share can be raised, thus a reduction of conventional CHP-heat. This will affect the primary efficiency and the CO2 emissions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. A17: Relevant reduction of energy losses in the central district heat system are expected through lowering the temperatures of the central DH-system “low ex”</td>
</tr>
</tbody>
</table>

IPMVP Option Selection Guidance

Follow each question starting from 1. Highlight choice of selection with a colour.

<table>
<thead>
<tr>
<th>Intervention Characteristics</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2] Able to isolate Actions(s) with meter(s)?</td>
<td>---</td>
<td>NO</td>
</tr>
<tr>
<td>[3] Are expected savings greater than 10%?</td>
<td>---</td>
<td>OPTION D</td>
</tr>
<tr>
<td>[5] Need to separately assess each Action?</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Measurement Boundary

A complete measurement of the impact of the MATCHUP-actions on the district heating system and the operation of the thermal storage units is neither available nor feasible. Several data needed to simulate the impact of the actions on the district heating system are based on the following assumptions:

1. Baseline uses the current primary energy factor of DREWAG (certified by external auditor).
2. While using RES for heat production, in accordance to the German legislation (EnEV) the primary energy factor for this share will be equal to 0.
3. RES heat production substitutes CHP generated heat.
4. Operation of heat storage system is derived from a system-technical and economic optimization of the Dresden district heating system.

Following indicators are accordingly analysed:

E1: Describes the primary energy consumption that is supplied to the system by natural energy sources. Measurement relevant relations consist of the size of the system and the considered time interval. The reporting in the SCIS consists of three phases: refurbished buildings (baseline, design, monitoring), new buildings (reference energy consumption), similar buildings (base of simulations). Unit.: kWh/(m²*year)

E4: CO2 emissions can therefore be considered a useful indicator for assessing the impact of urban development in climate changes. Unit.: Change in t/year

Full-load hours: Calculated value for the utilization of a thermal plant, which describes the sum of hours that a heat generator operates at full power. Unit: h, Interval: /, Reporting to SCIS: no

Utilization ratio: The share of Full-load hours in the related time period (year). Unit: % (in h), Interval: /, Reporting to SCIS: NO

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Baseline M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>- E1. Reduction in primary energy demand and consumption</td>
<td></td>
</tr>
<tr>
<td>- E4. CO2 emission reduction</td>
<td></td>
</tr>
<tr>
<td>- Full-load hours</td>
<td></td>
</tr>
<tr>
<td>- Utilization ratio</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24</td>
</tr>
<tr>
<td>M31</td>
</tr>
<tr>
<td>M37</td>
</tr>
<tr>
<td>M43</td>
</tr>
<tr>
<td>M49</td>
</tr>
<tr>
<td>M55</td>
</tr>
<tr>
<td>M60</td>
</tr>
</tbody>
</table>

Simulation models and tools

The following columns need to be filled with information about the simulation models and tools within the intervention

<table>
<thead>
<tr>
<th>Tool set and characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWG is using the “BoFit”-model to simulate the impact of district heat actions, as there is no opportunity to measure them in a meshed and complex system.</td>
</tr>
<tr>
<td>The BoFit Optimization tool is an instrument which is</td>
</tr>
</tbody>
</table>
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

<table>
<thead>
<tr>
<th>Model description and boundaries</th>
<th>BoFit is based on a mixed integer linear optimization model. That means, all equations and inequalities underlying the model must be linear.</th>
</tr>
</thead>
</table>
| Input data required | There is a wide variety of data included into the BoFit-system, concerning the storage and CHP-power plant operation as well as the central district heat system.
 E.g.
 - External temperature-dependent power plant characteristic curve, efficiencies of CHP-plants, power and capacity limits, minimum running times and minimum downtimes, CO2 and primary energy factors
 - Time series: Heat demand, electricity price, outdoor temperature, solar yield |
| Output data obtained | Time series:
 - Optimal schedule for generators and storage,
 - Operating costs,
 - Fuel consumption, CO2 emissions, primary energy
 - List output data that is obtained after the simulation |
| Assumptions | perfect preview of future prices, heat demand, consumption etc. (no forecast deviations) and model immanent deviations |

Action 13: District Energy Monitoring

In order to increase the number of feed-in options, a long-term program for lowering the temperature parameters in the district heating network runs. This improves the prerequisites for the integration of renewable heat input and reduces the distribution losses. These measures are a prerequisite for the district heating network to fulfill its role as a system-related complementary set for the expansion of electricity in the electricity sector.

The optimal operation of a network of many customers and feed-in points, good storage scheduling, consideration of even very short-term requirements from the regional power grid for the use of CHP and power-to-heat and a current- Data networking, controllability, intelligent control circuits and data security. In data management, the connection to smart-home applications for temperature control is also available in the individual apartments. It is conceivable from a perspective point of view that the temperature profiles predefined by the customer to his heating system can be directly used to improve the forecast quality of heat generation but also to optimize the optimization of virtual power plants.
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

On the basis of the further development of the thematic plan, new information on energy consumption from the Smart Meter Gateway (Actions 1 & 43) is to be prepared and used as an information basis for the energetic development of neighborhoods. For a better management of the DH, spatial representation of energy consumption by neighborhood and block will be monitored and thus control possibilities, means of public relations and the prerequisite for energy saving.

SUBCONTRACT

- Research program on primary efficiency and residual load – Budget: 15,000 €
- Measuring program on operating behavior and efficiency of thermal storage – Budget: 20,000 €

Scope of the subcontract (three different subcontracts will be needed to implement these actions: In order to increase the number of feed-in options, a long-term program for lowering the temperature parameters in the district heating network runs. This improves the prerequisites for the integration of renewable heat input and reduces the distribution losses. These measures are a prerequisite for the district heating network to fulfil its role as a system-related complementary set for the expansion of electricity in the electricity sector.

The subcontracting (15,000€) will cover costs for a study on primary efficiency and residual load (need to be done by a research organization).

Among others, this action is closely linked to action 7: Pfotenhauer Str. Retrofitting project (leader: VON). In the context of district energy systems, changes in a building’s heat demand also affect the energy efficiency of the whole district heating network. Various measures for temperature profile (supply and return) and mass flow rates must be planned, carried out and analyzed. For that, there has to be designed a long-term measuring program in district heating stations as well as in retrofitted blocks itself. That will provide concrete suggestions about the opportunities to lower the temperatures in defined sectors of the district heating system for Johannstadt. The complexity of this task is getting even higher by taking into account the feed-in-option, such as the use of the thermal storage.

Furthermore, the calculation and certification of primary efficiency has to be carried out by an independent certified organization.

The subcontract (20,000€) covers the measuring of operating behavior and the analyses of the efficiency of thermal storage (need to be done by a research organization).

For that an installation of a glass fibre measuring system (wall-system-measurement, U-bend) is required. This will allow to control of the dynamic of the temperature profile of the new thermal storage. Our Subcontract partner is responsible for the entire measuring system – planning, installation, analysis and reporting.
Cost estimation: The costs have been estimated based on previous installations and previous analyses provided by research organizations.

Type of procedure: The subcontracts will be awarded according to the principles for best value for money and absence of any conflict of interest (according to Articles 10, and 13 of AMGA).

A District heating grid model is actually not required for baseline definition and intervention evaluation. But again, those models can help to pre-evaluate different control strategies and system design parameters, if required.

Action 17: DH management optimization to increase the RES ratio of use (1st amendment version)

Action 17: Increase of RES in District heating system (2nd amendment version)

1st amendment version

RES ratio will be increased with the direct coupling of current excess from solar and wind peaks into the district heating (power-to-heat). The green heat share will be increased on the one hand and the electricity grid stabilized on the other. For this coupling electric boilers (40 MW with efficiency close to 100%) jointly with thermal storage (Action 36) will be installed in the DH for absorbing these RES production peaks interconnecting thermal and power grids.

Further renewable perspectives consist in the ongoing exploration of the use of geothermal deep heat, the integration of large heat pumps, the thermal utilization of non-recyclable residual parts, the use of waste heat even in the low temperature range and solar thermal energy.

2nd amendment version

RES will be increased in the district heating in Dresden, the integration of different sources is to be developed more intensively.

Integration of large-scale solar thermal energy will be tackled rapidly in addition to other options such as geothermal heat/heat pumps, waste-to-energy and the use of industrial waste heat, even in the low-temperature range.

Planned analyses by DWG on the use of large-scale solar thermal energy on an open area in Dresden Nickern of 20,000 m\(^2\) with a gross collector surface of 7,000 m\(^2\) require a connection to the Dresden district heating grid.

Within this action, an anticipatory feasibility study on the district heating pipeline through Dresden's urban area over a distance of approx. 1 km is to be realised. Further options for the conversion of the existing drinking water tanks at the site, as well as for the integration of solar thermal technology, are to follow depending on the positive project prospects.
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

SUBCONTRACT

Installation and commissioning for the energy efficiency improvement measures and coupling with the DH management system – Budget: 60,000 €

One major challenge is the integration of RES into the presently CHP-based DH-system. Within the duration of the MAtchUP-project DWG the integration of various RES into the district heat system as well as the lowering of temperatures will take place.

RES are excesses from wind and solar-power via Power-to-heat and geothermal deep heat, large heat pumps, utilization of non-recyclable residual parts, the use of waste heat even in the low temperature range and solar thermal energy. These developments cause the urgent need for a measuring-program on temperatures (supply and return at DH stations) and flows in certain DH grid-areas. On the other hand, the effects of these RES-integration-measures on efficiency and primary energy use have to be monitored on a timescale. All actions have to be proven to fulfill the bordering conditions of the meshed hydraulic system and hygienic (Legionella bacteria).

The subcontracted scientific partner is in charge of the design and the measurement equipment and also for carrying out a model-based analysis. All this aims to improve the energy efficiency of the DH system.

Baseline is defined by existing measurement data. No renewables are currently integrated. The monitoring with later measurement data will define all relevant KPIs. Anyhow, models can help to identify optimal design solutions and control strategies (prediction, retrodiction, etc.).

Action 36: New thermal storage of 7,800 m3 for DH

In parallel to the approach of increasing the RES ratio, an increasing share of regenerative energy is also one of the objectives for the near future and the realization of a continuous sectoral link between heat and power system is central. To existing capacities of thermal storage in the Reick Innovation Power Plant (2 MWel CHP-plant with 813 kWp of photovoltaics and 460+540 MWth @ 60 K of heat storage), DWG is going to add new thermal storage capacities of 7.800 m³. With this expansion and the examination of further options (long-term heat storage, demand peaks and demanded power reductions of the coupled electricity generation) can be realized more ecologically and through lower utilization of heating plant.

Baseline is defined by existing measurement data. No renewables are currently integrated. The monitoring with later measurement data will define all relevant KPIs. Anyhow, models can help to identify optimal design solutions and control strategies (prediction, retrodiction, etc.).
3.4 Smart Controls

This intervention only considers one action, Action 2 – Building Control Center. It mainly includes the development of a consistent energy consumption data acquisition with high temporal resolution of different public buildings. The main aim is to improve system control by gathering and evaluating a broad set of available data.

Baseline definition does not require any models. But again, suitable simulation models have although been built to pre-evaluate different measures of system control in an exemplary public school building with respect to available measurement data and suitable technical control elements.

Table 10: Option Template for Intervention 4

<table>
<thead>
<tr>
<th>Intervention 4: Smart Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involved Action</td>
</tr>
<tr>
<td>A2</td>
</tr>
</tbody>
</table>

IPMVP Option Selection Guidance

Follow each question starting from 1. Highlight choice of selection with a colour.

<table>
<thead>
<tr>
<th>Intervention Characteristics</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2] Able to isolate Actions(s) with meter(s)?</td>
<td>YES</td>
<td>---</td>
</tr>
<tr>
<td>[3] Are expected savings greater than 10%?</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[5] Need to separately assess each Action?</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[6A] Missing baseline period data?</td>
<td>---</td>
<td>OPTION B</td>
</tr>
<tr>
<td>[6B] Missing baseline period data?</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Measurement Boundary

High-resolution measurement of energy systems data, in heating and cooling as well as power supply systems of buildings, basically does not ensure any energy savings at all. However, it enables the integration of smart control algorithms which utilizes available degrees of freedom of local renewable power production and storage, fluctuating energy prices as well as volatile energy demands. Furthermore, the conscience of energy consumption share and potentials of energy savings gained via suitable measurements can further lead to minor consumption reductions due to an improved occupancy and energy usage.

Following indicators are accordingly analysed:

E1: Describes the primary energy consumption that is supplied to the system by natural energy sources. Measurement
relevant relations consist of the size of the system and the considered time interval. The reporting in the SCIS consists of three phases: refurbished buildings (baseline, design, monitoring), new buildings (reference energy consumption), similar buildings (base of simulations). Unit.: kWh/(m²*year)

E2: Considers, in opposition to E1, the final energy consumption that is supplied to the system by different energy sources which are evaluated individually. Measurement relevant relations consist of the size of the system and the considered time interval. The reporting includes the collection of baseline data as well as measurements after intervention implementation. Unit.: kWh/(m²*year)

E3: Percentage increase in the share of local renewable energy due to the intervention. It is separately determined for thermal (heating or cooling) energy and electricity. Unit.: kWh/month

E6: Degree of local renewable energy supply can match hourly energy demand over the whole year. Unit: kWh

E7: Ratio between the highest values for hourly demand to the lowest ones in each month. Unit: ratio/month

E8: Describes the ratio between battery utilization and available battery capacity. Unit: ratio/month

E14: Defines if requirements of NZEB 2020 directive are complied. Unit: yes/no

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Baseline Period</th>
<th>Simulation models and tools</th>
</tr>
</thead>
</table>
| - E1. Reduction in primary energy demand and consumption | Baseline M24 | In Dresden, the linked third party EA Systems GmbH Dresden, which is mainly in charge with the simulation models of most of the interventions / actions, uses the versatile, non-causal, multi-physical, Modelica™-based simulation environment SimulationX and the included Green City simulation library which provides a wide range energy supply and storage systems models as well as an easy-to-use and valid platform for building performance simulation. For occupants' behaviour simulation this tool set will be coupled via Functional Mockup Interface (FMI) to common multi-agent-simulation tools (e.g. Netlogo).
| - E2. Reduction in annual final energy consumption | M31 | Besides building and energy system models including energy management as well as co-simulation of |
| - E3. Increase in local renewable energy generation | M37 | |
| - E6. Maximum hourly deficit | M43 | |
| - E7 Monthly ratio of peak hourly demand to lowest hourly demand | M49 | |
| - E8. Storage capacity factor | M55 | |
| - E14. Compliance with Nearly Zero Energy Buildings (NZEBs) requirements | M60 | |

The following columns need to be filled with information about the simulation models and tools within the intervention.
D3.2: Simulation models of the building stock, energy system, transportation, urban infrastructures (1st)

Probabilistic occupancy models, charging infrastructures as well as electric vehicle fleets are integral part of this simulation environment. It additionally considers security of supply as well as profitability requirements and regards local building regulations. All simulation models are furthermore designed to be easily scaled-up from single-building to city-district level and size. Thus, enables EASD to calculate coupled electricity, heating and cooling grids for city districts as well as the interactions between energy sources, storage facilities, lines and consumers in a large-scale manner. The models therefore help to realize a MAtchUP core concept regarding the up-scaling of single optimization measures to a whole city district area.

Model description and boundaries

A2 uses a simulation model of local standard Dresden school building to evaluate different technical measures of energy consumption reduction as an example for suitable optimization measures in public buildings in the Johannstadt city district. Like in A1, the model results will further be used to scale-up resultant performance optimization and to evaluate corresponding technical KPIs for all existing public buildings, especially similar school buildings, in the city district Johannstadt. Again, this model could be validated with available measurement data of recent years for heat and power consumption and is thus as accurate as the corresponding A1 model.

Input data required

The developed and required models for energy interventions in Dresden mainly refer to different types of buildings as well as occupancy. These different models require most likely the same set of input parameters, if available:

- Available measurement data of at least one recent year (existing buildings) regarding heat, natural gas, electricity, cold, etc. consumption
- Description and design plans of power supply and HVAC system including brief overview of control schematic
- District plans (for district models) and included grid design (electricity, heat, natural gas, cold, infrastructure, etc.)
- Datasheets of technical systems (manufacturer data) including relevant performance data

Output data obtained

Normally, building performance models as well as HVAC system, power supply and grid models can provide following general list of outputs:

- Gains and consumption of different forms of energy (e.g. local renewables, heating, cooling and power supply, etc.)
- Evaluation of dimensions and feasibility of technical system components (e.g. photovoltaic or battery system size)
- Analyses of total (or individual) costs (operation and investment) and total profitability
- Evaluation of different strategies for storage control and energy management
- Evaluation and analyses of different performance optimization measures

A2 – Public building / exemplary school building:

- Evaluation of different optimization and refurbishment measures
- Profitableness of different interventions

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement N°774477
Assumptions

Influences of a smart control system always depend on the available degree of freedom of the controlled system as well as existing energetic standard. This intervention assumes that additional smart control inputs can significantly improve the energetic standard and have some degree freedom to be controlled.

Further assumptions consider the implemented models of the evaluated public school building. Again, the energetic behaviour is simulated in high temporal resolution, assumptions are mainly made regarding occupancy rate of different rooms inside the building but results have always been recalibrated with available annual measurement data.

Action 02: Building control center – 12 Public buildings energy managed

5 schools, 6 children's day care facilities and 1 administrative building, all of them located in Dresden’s high-performance district Johannstadt, will be connected to a Central Building Control Center (CBCC), which although currently being constructed in another Dresden district, will allow increasing the effective energy management of the selected 12 public Johannstadt buildings. This increment will be obtained through the permanent timely adaptation of the building heating systems with the current internal and external climatic conditions, exhausting the existing energy savings potential. All data acquired by the CBCC will be integrated into the Dresden Urban Platform and will be released as Open Data.

Role of the Third Party EASD:

Main goal of Action A2 is to improve the energy efficiency of public buildings. Therefore, EASD models one representative school building in the district using the A1 modeling approaches. Besides building performance analyzes and optimization, the models are used to implement and test predictive heat control algorithms, mainly regarding a permanent adaptation of heating depending on outdoor and indoor conditions. Dresden wants to add the public buildings to its Central Building Control Center (CBCC), a platform for data monitoring and evaluation and building energy management. To support a permanent high energetic standard of the connected buildings, EASD exemplary shows efficient measures of data evaluation and system optimization including models and monitoring data for the selected representative school building.

A2 uses a simulation model of local standard Dresden school building to evaluate different technical measures of energy consumption reduction as an example for suitable optimization measures in public buildings in the Johannstadt city district. Like in A1, the model results will further be used to scale-up resultant performance optimization and to evaluate corresponding technical KPIs for all existing public buildings, especially similar school buildings, in the city district Johannstadt. Again, this model could be validated with available measurement data of recent years for heat and power consumption and is thus as accurate as the corresponding A1 model.
4 Conclusions

This deliverable introduces the methodological tools for determining through mathematical models any data necessary for calculating an indicator, when data cannot be directly measured. It provides information about those actions of Dresden that need simulation and also informs about the actions that use mathematical models for the calculation of indicators defined in deliverable D5.1.

The deliverable is linked with Task 3.2 “Baseline of interventions definition”, more specifically Subtask 3.2.1 “Simulation models (buildings, energy systems, city infrastructures) and it is the first version of D3.15 (M36). A description of the simulation methodology that includes tools used and characteristics, model description and boundaries, Input data obtained, Assumptions and Calibration/validation of the model will be implemented in the following versions.

The IPMVP has been introduced with its options A to D, how energy savings can be measured. With the help of the IPMVP protocol those actions have been identified that are considered as option C and D and use mathematical or simulation models.

As one first outcome identified in Dresden only for interventions related to building stock and energy systems baselines are needed. Interventions of transportation and urban infrastructure, so as ICT-related and non-technical-related interventions don’t require any baseline and therefore no simulation models are necessary.

In Dresden there are five interventions related to building stock and energy systems, with a total of four actions that need simulations.
5 References

D5.1 Technical evaluation procedure (2019)

IPMVP (2016): Core concepts - International performance measurement and verification protocol.

IPMVP (2012): Volume 1